A Sustainable Strategic Broadband Plan For Accelerating Arizona's Economic Recovery and Growth and Transformation of Education and Healthcare

Presented September 29, 2011

to

Arizona Broadband Development Council Inaugural Meeting

Michael Golden
Director, Arizona Broadband Project
Arizona Strategic Enterprise Technology (ASET) Office

Increasing Arizona's Broadband Capacity

Broadband is Not an Inalienable Right

Neither are:

- Highways
- Electricity
- Clean water

Yet the development of these *essential infrastructures* has proven to be fundamental to our country's economic growth, competitiveness and well-being

The New Essential

Broadband Internet Capacity is the *New* Essential Infrastructure

- It is required for:
 - Improving education outcomes while lowering costs
 - Improving healthcare delivery while lowering costs
 - Attracting large businesses and growing small ones
 - Enhancing government services while lowering costs
 - Better public safety and security
 - Increased quality of life for Arizona's citizens

How Can Limited Government Accelerate Broadband Capacity and Related Economic Growth?

- Leverage tax-payer owned assets to reduce the cost of private sector broadband build out in underserved areas
 - Leverage Public Rights-of-way
 - Two highways for (nearly) the cost of one
 - Canals
 - Power lines
 - Railroads
- Coordinate, simplify and accelerate broadband permitting and easements
 - Establish State Broadband Infrastructure Authority
 - Create and enforce reasonable and uniform practices for broadband related permitting and easement processes
- Leverage existing \$6.3 M Federal grant into sustainably funded mechanism for build-out acceleration

Arizona Broadband Development Council (proposed governance structure)

Executive Steering Committee

Three Representatives from Each Stakeholder Representative Group

Chair: State CIO

Citizens / Economic Development / Business

7 Members:

- ✓ Health Care
- ✓ Education
- ✓ Manufacturing
- ✓ Urban Community
- ✓ Rural Community
- ✓ Commerce

Governments Representatives

7 Members:

- ✓ State Agencies as Customers / Policy Makers
- ✓ Local Governments as Customers / Policy Makers

Broadband Provider Representatives

- 7 Members:
 - ✓ ILECS
 - ✓ Cable Companies
 - ✓ Cellular/LTE
 - ✓ Fixed Wireless
 - ✓ Infrastructure
 - ✓ Urban / Rural

Our Measures of Success for AZ Broadband Project

- ✓ Non-metro broadband capacity increased by 20% by 2014 over current baseline
- ✓ Non-metro broadband adoption increased by 20% over current baseline by 2014
- ✓ Increased middle mile capacity (both gigabits/sec per mile and actual route miles) increased by 100% against current baseline by 2015
- ✓ Increase miles of public rights-of-way re-use by 200% by 2014
- ✓ Minimum of 1 gbps to every school in Arizona by 2015
- ✓ Sustainable Arizona Broadband Universal Service Fund established by 2012

The Tactical Possibilities (Incremental Scalability Is Everything)

"Two Highways For the Cost Of One"

acceptable ROI's

Why Fiber Conduit Capacity is Essentially Infinite (and why it matters)

- The most expensive aspect of fiber is the right-of-way (time and money)
- Next most expensive is digging a trench
- Conduit is just plastic pipe (inexpensive)
- Pulling fiber through existing conduit (relatively inexpensive)
- Multiple conduits in one trench mean providers don't interfere with one another's services
- Scalability:
 - Potential of approximately 14 thousand gigabits per second per single fiber strand (7 thousand 2-gigabit beams per strand)
 - up to 96+ strands per conduit channel
 - up to 8 channels per conduit
 - up to 8 conduits per trench
- One 8 conduit trench has the potential for fully redundant capacity of 43 million gigabits per second - one strand has the capacity of the entire wireless spectrum or 21 million 2 Gb/s beams per fiber route

This Is What 2 Gigabits Can Support

- A single 2-gigabit per second beam roughly translates to:
 - Twenty 100 megabit simultaneous Internet connections
 - Eighty 25 megabit simultaneous Internet connections
 - 240 simultaneous different high-def large screen TV streams
 - 480 simultaneous different iPad video streams
 - 300 Internet/IPTV subscribers (based on busy hour models)
- Fifty 2-gigabit per second beams from just 5 cell towers translate to:
 - One thousand 100 megabit simultaneous Internet connections
 - Four thousand 25 megabit simultaneous Internet connections
 - Twelve thousand simultaneous different high-def TV streams
 - Twenty four thousand simultaneous iPad video streams
 - 6,000 Internet/IPTV subscribers

Thank You www.azbroadband.gov

Contact Information

www.azbroadband.gov

Aaron Sandeen
State CIO
Chair: Broadband Development Council
Aaron.Sandeen@azdoa.gov
602-542-2250

Michael Golden
Director, Broadband Planning
Arizona Broadband Project
Mike.Golden@azdoa.gov
928-301-0136

Galen Updike

Broadband Development Manager

Galen.Updike@azdoa.gov

602-364-4794

Jeffrey Crane
Project Manager
Jeffery.Crane@azdoa.gov
480-652-0384

Eric Thomas
Outreach Manager
Eric.Thomas@azdoa.gov
602-309-6791

